Gaskleen® ST Purifier

Data Sheet MEGSTEN

Description

A unique combination of Pall's leading edge AresKleen™ purification material combined with Ultramet-L® stainless steel filter media creating the industry's most advanced true point-of-use purifier.

The Gaskleen® ST Purifier assembly is designed to remove contamination from many process gases. Sub ppb level purification is achieved at designed flow rates of up to 5 slpm while providing 0.003 µm filtration.

Features & Benefits

- Controls and reduces impurities such as O₂, H₂O, CO₂, CO, NMHC, Ni(CO)₄ and FE(CO)₅
- One-for-one dimensional replacement of conventional in-line particle filter assemblies
- Assembly hardware is made of 316L stainless steel
- High efficiency diffusion barrier ensures integrity of reactive material during installation
- Superior pressure drop characteristics
- Wide variety of gases purified
- 100% helium leak and pressure tested
- Compact size
- Not orientation sensitive

- Does not generate hazardous waste when used in nonhazardous gas service
- Will not release hydrocarbons
- No detectable metal contribution above background in HCl gas with HCLP material
- No detectable metal contribution above background in HBr gas with HBRP material

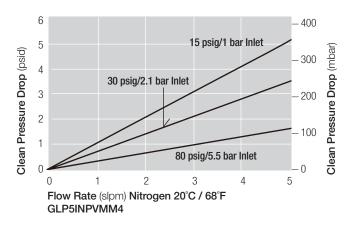
Specifications

Materials

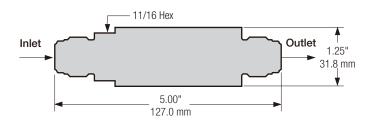
Internal Surface Finish	≤ 0.25 µm / 10 µin R _a	
Particle Removal Efficiency Rating	1x10 ⁹ retention of particles ≥ 0.003 µm up to 5 slpm	
Connections	½" Gasket Seal, Male / Male (VCR¹ compatible)	
Maximum Operating Pressure	2200 psig / 152 bar	
Maximum operating temperature	100 °C / 212 °F (INP, SIP, FCP, SF6P), 40 °C / 104 °F (GEH4P, OXP, CLXP, HCLP, HBRP, CDAP)	

Electropolished 316 L VAR PLUS

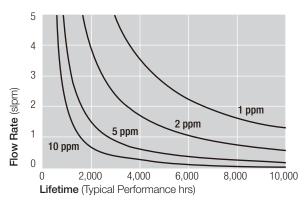
stainless steel components


	0-5 slpm @ 15 psig / 1 bar	
Design Flow Rate	Intermittent flow rates up to 10 slpm can be accommodated with reduced lifetime ²	
Packaging	Double bagged	
	Outer bag: aluminized mylar ³	
	Inner bag: polyethylene	
	End fittings capped with metal seals	
	Product packaged in an argon environment	
Nominal Dimensions	Length: 5" / 127 mm	
	Diameter: 1.25" / 31.8 mm	
EU pressure Equipment Directive	Assemblies have been evaluated and are CE marked per the European Union's Pressure Equipment Directive 2014/68/EU.	

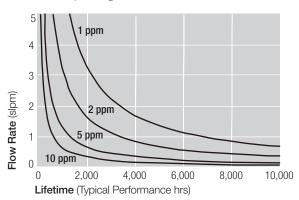
¹VCR is a trademark of Swagelok Co.


² Contact the Pall Microelectronics Group for further information.

³ Mylar is a registered trademark of Dupont Teijin Films.


Pressure Drop vs. Gas Flow Rate

Nominal Dimensions



Lifetime Calculations

Pall AresKleen Purification Material: Inert Gas Service Gaskleen ST Purifier Assembly, Part # GLP5INPVMM4

Inlet Pressure: 30 psig (2.1 bar) Contaminant Challenge as $\rm H_2O$

Pall AresKleen Purification Material: Inert Gas Service Gaskleen ST Purifier Assembly, Part # GLP5INPVMM4

Inlet Pressure: 30 psig (2.1 bar) Contaminant Challenge as O₂

Part Numbers / Ordering Information

Part Number Specifications	Specific Gas	Effluent Purity
GLP5INPVMM4	Inert Gases: Nitrogen, Argon, Helium, Xenon, Krypton, Neon	< 1 ppb H ₂ O, CO ₂ , O ₂ , CO
GLP5SIPVMM4	Flammable Gases: Silane, Hydrogen, Methane, Ethane, Cyclopropane, Propane, Dimethyl Ether	<1 ppb H ₂ O, CO ₂ , O ₂ , CO
	Carbon Monoxide	< 1 ppb H ₂ O, O ₂ , CO ₂ , Ni(CO) ₄ , Fe(CO) ₅
GLP5FCPVMM4	Fluoromethane, Difluoromethane, Trifluoromethane, Tetrafluoroethane, Pentafluoroethane, Heptafluoropropane, Carbon Tetrafluoride, Perfluoropropane, Perfluorocyclobutane, Hexafluoroethane	< 1 ppb H ₂ O, CO ₂ , O ₂
GLP5GEH4PVMM4	Germane	< 1 ppb H ₂ O, CO ₂ , O ₂ , CO
GLP5SF6PVMM4	Sulfur Hexafluoride	< 1 ppb H ₂ O, CO ₂ , O ₂ , CO
GLP5OXPVMM4	Oxygenated Gases: Carbon Dioxide, Oxygen, Nitrous Oxide	< 10 ppb H ₂ O
GLP5CLXPVMM4	Chlorinated Gases: Boron Trichloride, Chlorine, Trichlorosilane, Dichlorosilane	< 100 ppb H ₂ O
GLP5HCLPVMM4	Hydrogen Chloride	< 15 ppb H ₂ O
GLP5HBRPVMM4	Hydrogen Bromide	< 50 ppb H ₂ O
GLP5CDAPVMM4	Lithography clean dry air	< 1 ppb H ₂ O,
		< 300 ppt organics (as C ₄),
		< 10 ppt acid gases (as SO ₂),
		< 15 ppt basic gases (as NH ₃)
		< 1 ppt refractory compounds (as HMDSO)

Technical Information

Impurity Removal as Tested in Specific Gases

Specific Gas	Impurity Removal Efficiency	
Inert Gases: Nitrogen, Argon, Helium, Xenon, Krypton, Neon	< 1 ppb H_2O , CO_2 , O_2 , and CO as tested in argon and nitrogen using APIMS analyzer	
Flammable Gases: Silane, Hydrogen, Methane, Ethane,Cyclopropane, Propane, Dimethyl Ether	< 1 ppb H_2O , CO_2 , O_2 , and CO as tested in argon, nitrogen and hydrogen using APIMS analyzer	
	$<$ 1 ppb H_2O as tested in carbon monoxide using trace moisture analyzer	
	H ₂ O and siloxanes removed to trace levels as tested in silane using APIMS	
Carbon Monoxide	< 1 ppb Ni(CO) ₄ , and < 1 ppb Fe(CO) ₅ as tested in carbon monoxide using GC-ECD analyzer	
Fluoromethane, Difluoromethane, Trifluoromethane, Tetrafluoroethane, Pentafluoroethane, Heptafluoropropane,	< 1 ppb H_2O , CO_2 , O_2 , and CO as tested in argon and nitrogen using APIMS analyzer	
Carbon Tetrafluoride, Perfluoropropane, Perfluorocyclobutane, Hexafluoroethane	$<$ 1 ppb O_2 as tested in trifluoromethane using trace oxygen analyzer	
	$<\!$ 10 ppb H_2O as tested in trifluoromethane using trace moisture analyzer and FTIR	
Germane	< 1 ppb H_2O , CO_2 , O_2 , and CO as tested in argon and nitrogen using APIMS analyzer	
Sulfur Hexafluoride	< 1 ppb H ₂ O, CO ₂ , and O ₂ as tested in argon using APIMS	
Oxygenated Gases: Carbon Dioxide, Oxygen, Nitrous Oxide,	< 10 ppb H ₂ O	
Clean Dry Air	$<$ 1 ppb H_2O , and CO_2 , as tested in argon using APIMS analyzer	
Chlorinated Gases: Boron Trichloride, Chlorine,	< 100 ppb H ₂ O	
Trichlorosilane, Dichlorosilane	$<$ 1 ppb H_2O , and CO_2 , as tested in argon using APIMS analyzer	
Hydrogen chloride	< 15 ppb H ₂ O as tested in hydrogen chloride using CRDS	
	$<$ 1 ppb $\mathrm{H}_2\mathrm{O}$ as tested in argon using APIMS analyzer	
Hydrogen Bromide	< 50 ppb H ₂ O as tested in hydrogen bromide using CRDS	
	$<$ 1 ppb $\rm H_2O$ as tested in argon using APIMS analyzer	
Photolithography clean dry air	<1 ppb H ₂ O as tested in argon using APIMS analyzer	
5 . 3	< 300 ppt C ₄ H ₈ as tested in argon using APIMS Analyzer	
	< 10 ppt SO ₂ as tested in nitrogen using ion chromatograph	
	< 15 ppt NH ₃ as tested in nitrogen using ion chromatograph	
	< 1 ppt HMDSO as tested in argon using APIMS analyzer and baseline subtraction	

Unit conversion: 1 bar = 100 kilopascals